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J. Phys. A: Math. Gen., 13 (1980) 449-452. Printed in Great Britain 

Short derivation of Feynman Lagrangian for general 
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Abstract. A short derivation of the Feynman Lagrangian for general diffusion processes is 
given by a technique relying on the use of different discretisations which are related by 
equivalence relations under the n-dimensional integral whose limit is the path integral. In 
this way calculation of the differential equation satisfied by the path integral is avoided. 

We consider, in the m-dimensional space q = ( S I , .  . . , q”), the most general differen- 
tial equation of the form p(q, t )  = 9 ( a ,  q, t )P(q,  t ) ,  where 3, = 8/84” and only deriva- 
tives up to second order are allowed in the operator 2. We write it as 

(1) 

(summation over repeated indices is to be understood), where we take D””(q, t ) ,  which 
is symmetric in its two indices, to be positive definite, and consequently D(q, t )  = 
det D””(q, t )  # 0. For V(q, t )  = 0 one has the usual Fokker-Planck equation. If we 
assume that P(q ,  t )  transforms as p(q, t )  = /det(8(4)/8(S))j-’P(q, t )  under a general 
coordinate transformation 4” = 4” ( q ) ,  which is the case for the Fokker-Planck equa- 
tion where P(q,  t )  is the probability density, then the transformation properties of (1) 
can be studied (Graham 1977b) in detail and it is convenient to introduce a Riemann 
space structure in q space usingD””(q, t )  as the contravariant metric tensor, this choice 
being dictated by the transformation of this last quantity. 

We are interested in the solution P(Q,  T ;  Qo, t o )  of (1) which reduces to S ( Q  - Qo) 
for t = to. It is convenient to introduce an operator formalism (Langouche et al 1979a), 
writing P(Q,  T ;  Qo, to )=(Q(U(T,  to)lQo) with i8,U(t, t’)=A(b@,i”, t )U(t ,  t’)  (a t=  
8 / 8 t )  and fi= - 4 i ~ , ~ y D ” ” ( ~ ,  t)-hwA”(8, t)+iV(d, t ) ,  where we have used the usual 
quantum mechanical notation and p*, = -i8/8q” in the 14) basis. As has been remarked 
(Langouche et a1 1979a,b, Leschke and Schmutz 1977), and especially by Dowker 
(1976), P(Q,  t ;  Qo, to) admits an infinity of functional integral representations 

P(S, t )  = [J,(A”(q, t)+38uDCIV(q, t ) ) +  V(q, t)lP(q, t ) ,  

q ( t ) = Q  

P(Q, t ;  Qo, to )  = I, DPh1 exp[ 4 7 4  ( 2 )  
q(b)= Qo 

where y stands for the discretisation involved in the definition of the functional integral 
and L y  = $DNY(q, ~ ) 4 ” 4 ~  + a;(q, ~ ) 4 ”  + b ’ ( 4 , ~ )  which we call the Lagrangian, depends 
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explicitly on the discretisation y through a& and b ’. The different discretisations y arise 
naturally from the different orderings in H of the noncommuting operators 8, and 4’ 
(Langouche et a1 1979, Leschke and Schmutz 1977). The representation corresponding 
to discretisation in the prepoint (which we call y l ( 0 )  in Langouche et a1 (1979b) and 
leads to the Lagrangian L’’‘’)) is most easily obtained since it corresponds to I? ordered 
in the original anti-standard form given above. -4 standard calculation (Faddeev 1976, 
Langouche et a1 1979a,b) using 

n 

with U(ti+l, t j )=f -kf i ( t i ) ,where t i  =to+je,  E = ( T - t o ) / ( n  +l),allowsustoexpressP 
as 

where Ai = qj+l -qj ,  D = det D,”, Dcl,,Dyp = a:, and we have kept terms up to O ( E )  
since the others do not contribute when n +Co. 

On the other hand Feynman’s definition of the functional integral representing P is 
(Cheng 1972, Dowker 1975) 

. n  n 

= lim dqi n ND(qi + Aj, ti + e / 2 ) - ’ l 2  
n+w J Q j = o  

(4) 

xexp[ -stat jt,i+‘drLF(q(r), 4 ( ~ ) ,  r ) ] ,  

where stat indicates that the action 5 d r L F  is to be evaluated along the trajectory q ( T )  
that makes this action stationary for q(t i )  = qj, q(fi + E )  = qj+l .  The definition (4) deter- 
mines the Feynman Lagrangian LF which we want to calculate. The simplest way to do 
this is to write LF in the general form LF = ;D,y4”4“ +aE(q, r)4” +bF(q,  T ) ,  and then 
determine a; and bF comparing (3) and (4) which represent the same quantity. The 
standard method (Cheng 1972, Dowker 1975) consists of determining the LF such that 
(4) satisfies (1); the calculations are quite involved and the most elegant version is 
Dowker’s, using normal coordinates (Dowker 1975). Both (3) and (4) are of the form 
5 II dq, rIP,(qi +Ai, ti + E ;  qj, ti), cy = 1,2 ,  where P1 can be read from (3) and P2 from (4). 
In order to compute P2 and compare with P I ,  we calculate the action in (4) as a power 
series in A and E ,  keeping terms up to order E ,  taking into account that AA = O ( E ) ,  as can 
be seen from (3) (De Witt 1957, Langouche et a1 1979b). We then want d =  
J:+‘dr LF(q(r), q(r ) ,  7) for the trajectory q ( r )  solution of the Euler-Lagrange equa- 
tions of LF with q ( f ) = q , q ( t + c ) = q + A .  Developing DFLY(q(r), T ) =  

D,,(q(T), t )+&Dwu(q(r) ,  t ) .  ( 7 - f ) f 0 ( ( T - t ) 2 )  we write L ~ = L ’ + A L ,  L O =  

iD,,(q(r), t)cj”4”. The calculation of 5 d r  AL is direct (since it is independent of the 
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differential equation obeyed by the trajectory): 
I + C  

[ d.r AL = (iarDFvA” A” + a EA” + $a,a:A’” A” + ebF)  (4,r) + O ( E ~ / ~ ) ,  ( 5 )  
J t  

and (4, t )  at the end of the formula means that all functions are evaluated at the prepoint 
(4, t ) .  The contribution of Lo to SQ is now given by the same calculation as in appendix A 
of Cheng (1972) which is simple and straightforward: 

1 1 I + <  

d7 Lo = -Dwu A” A”  +--d+DUpA@ A” AP 
(2E 4E 

where rwVp are Christoffel symbols. The relation between the determinants in (3) and 
(4) is 

D ( q  + A ,  t + e/2)-lI2 

= D(q, c ) - ” ~  exp[ -ta,DA”/D - E / ~ D  dID 

+$(d,Da,,D/D - d,a, ,D/D)A”A” + O ( E ~ ’ ~ ) ] ( ~ , ~ )  (7 1 

We can now replace in P2 the action (sum of (5) and (6)) and the determinant 
using (7). The result is of the form P 2 ( q + A ,  t + E ; q ,  t ) =  
ND(q, t)-‘” exp[ -&‘Dlly(q, t)A\”A” + B], where B has terms in A, A2, A3/e, A4/e, 
with coefficients evaluated at (4, t ) .  One now develops exp[B] up to O ( E ) ;  
this generates extra terms in A2, A4/e and A6/e2 = O ( E ) .  We recall the equivalence 
rules (Dekker 1978, De Witt 1957, Langouche et a1 1979b, Weiss 1978) (the 
symbol = stands for equivalence under the n-dimensional integral) 

D””D””), A”A”APAuATAA = E ~ ( D ” “ D ~ “ D ~ ’ )  +perm), where all the functions D”‘ are 
evaluated at (q, t ) .  Using these rules one transforms the terms in A3/c in terms in A, and 
the terms in A2, A4/e, A 6 / E 2  in terms in E .  We can now compare this final expression of 
P2 with that of PI  obtained from (3) and written as ND-”2exp(-iD,,AwA“) (1- 
D , , A ” A “ + E V + O ( E ~ / ~ ) ) ;  this determines aE(q, t )  and bF(q ,  t), and LF is 

AW +DFY, A F A U A P  =AFD UP + ~ ” D W P  + APDWY, A ~ A P A ~  + ~ ( D W D P U  + DWPD + 

LF(q, q, t )  = $D,,(4” + a”)(4’ + a ”) - y & , a ” / J ~ +  iR - V, (8) 

where R is the curvature of the metric Dwu(q, t )  and a” = A ”  +iJ&.D””/JE. Note 
that LF is a scalar, but this was of course implicit in the definition (4). We would like to 
point out that a calculation on similar lines to the one here has been made by Dowker 
(1974), where the comparison with a standard simple discretisation of reference (e.g. 
the prepoint one) is replaced by the explicit computation of the jump moments (A@A”)  
and ( A @ ) ,  and then the use of the standard Kolmogorov derivation of the diffusion 
equation. The calculation in Dowker (1974) has the nice feature of being covariant and 
simple through use of Ruse’s Taylor series for the expansion of the action, but needs 
knowledge of this technique. 

Formula (8) was recently obtained by a similar method by Weiss (1978); however, 
there the author finds it necessary to calculate the exact short-time propagator, i.e. 
(qi+llU(t,+l, ti)lqi), in powers of E and Ai before using the equivalence relations 
mentioned above. This long calculation requires the scaling method of Graham 
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(1977a), and is unnecessary, since all the extra terms with respect to the prepoint 
discretisation we use vanish as we have shown in detail (Langouche et a1 1979b); in fact, 
the method of Graham (1977a) provides a direct proof that only terms up to order E are 
needed in intermediate steps. We remark also that recently Dekker (1979) has given a 
definition of the functional integral which consists of stating that the short-time 
propagator is to be computed by expanding the paths in Fourier series and integrating 
over the Fourier components. The result is (8), but in fact the proof given in Dekker 
(1978) is only valid in flat space since the use of local Euclidean frames is not 
allowed in finite regions of curved space and extra contributions will arise. Moreover, 
one can easily check in the simplest possible case (the harmonic oscillator) that the 
transformation to Fourier components in the integral J L ( q ,  4 )  dt leads to a multiple 
integral which vanishes in the limit (Chang 1977). A way out of this difficulty can be to 
leave the normalisation unspecified, a prescription that works for the harmonic 
oscillator, but this deserves further study; or else to use a smoothed differentiation 
technique in the Fourier series, as mentioned in the earlier work of Dekker (ref. quoted 
in Dekker 1978), but this turns out to be equivalent to using a discretisation prescrip- 
tion, which is what the author is trying to avoid in Dekker (1978, 1979). The result (8) is 
not the Lagrangian LG of Graham (1977a), which has AR instead of 2R here. We 
conjecture that the LG proposed by Graham is the one that determines the most 
probable path in the sense of Langouche et a1 (1978). The reason is that the WKB 
approximation - [ d e t ( - ~ ? ' d ~ / 6 q , " , . ~ 6 q ~ ) ] ~ ' ~  x exp[ - d"], dG = J LG d.r, is exact to 
O ( E )  for the short-time propagator. 
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